Predecessor Data Structures

Philip Bille
Outline

- Predecessor problem
- First tradeoffs
- Simple tries
- x-fast tries
- y-fast tries
Predecessor Problem
Predecessor Problem

- The *predecessor problem*: Maintain a set $S \subseteq U = \{0, \ldots, u-1\}$ under operations

 - predecessor(x): return the largest element in S that is $\leq x$.
 - successor(x): return the smallest element in S that is $\geq x$.
 - insert(x): set $S = S \cup \{x\}$
 - delete(x): set $S = S - \{x\}$

- We often ignore successor since we can get it from predecessor.
Applications

• What applications do we know?

• Simplest version of nearest neighbor problem.

• Several applications in other algorithms and data structures.

• Probably most practically solved problem in the world: Out all computational resources globally most are used used to solve the predecessor problem!
Routing IP-Packets

Where should we forward the packet to?

To address matching the longest prefix of 192.110.144.123.

Equivalent to predecessor problem.

Best practical solutions use advanced algorithmic techniques [Degermark, Brodnik, Carlsson, Pink 1997]
Solutions to the Predecessor Problem

- Which solutions do we know?
- Linked list
- Balanced binary search trees.
- Bitvectors
First Tradeoffs
First Tradeoffs

• Assumption: We use space $O(u)$.

• What tradeoffs can we get for predecessor queries vs. updates (inserts and deletes)?
Fast Predecessor Queries

• How fast predecessor queries can we get if we ignore time for updates?
• Hint: Remember you can use $O(u)$ space.
Fast Predecessor Queries

• Solution: Precompute and store all predecessor queries.

• Example: \(S = \{0,2,8,11,14\} \).

\[
\begin{array}{cccccccccccccccc}
0 & 0 & 2 & 2 & 2 & 2 & 2 & 2 & 8 & 8 & 8 & 11 & 11 & 11 & 14 & 14 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15
\end{array}
\]

• \(O(1) \) time for predecessor.

• \(O(u) \) time for updates.
Fast Updates

• How fast updates can we get if we ignore time for predecessor?

• Hint: Remember you can use O(u) space.
Fast Updates

• Solution: A bitvector

• Example: $S = \{0, 2, 8, 11, 14\}$.

```
0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
```

• $O(u)$ time for predecessor.

• $O(1)$ time for updates.
Fast Updates and not so Slow Predecessors

• Can we improve the bitvector solution to get $O(1)$ updates and $o(u)$ predecessor?

• Hint: Try to come of with a two-level solution!
Fast Updates and not so Slow Predecessors

• Solution: Partition bitvector into $u^{1/2}$ subvectors of length $u^{1/2}$.
 - Maintain a summary bitvector of length $u^{1/2}$ where index i is 1 iff subvector i contains a 1.
• Example: $S = \{0,2,8,11,14\}$.

 ![Diagram of bitvector partition and summary](image)

• predecessor(x): Search for predecessor of x in subvector for x, if not found, find predecessor in summary and then in corresponding subvector. $O(u^{1/2})$ time.
• $O(1)$ for updates (≤ 2 bitvectors to update).
van Emde Boas Data Structure [van Emde Boas 1975]

- Extend two level idea recursively to $O(\log \log u)$ levels. Combine with some additional tricks.
- \Rightarrow Predecessor data structure with $O(\log \log u)$ time per operation and $O(u)$ space. ($O(n)$ space with hashing)
- Intuition: $T(u) = T(u^{1/2}) + O(1) = O(\log \log u)$
- We show simpler but (essentially) equivalent solution.
Overview

• Simplifying assumption: We ignore updates (inserts and deletes)
• Goal: Achieve $O(\log \log u)$ time queries with $O(n)$ space.
• Solution in 3 steps:
 • Simple trie: Slow and too much space.
 • x-fast trie: Fast but too much space.
 • y-fast trie: Fast and little space.
Simple Trie
Tries

- *Trie* of \(S \) = tree of prefixes of binary representation of values in \(S \) (the dark tree above)
- Depth is \(\log u \) = number of bits for value in \(U \).
- Number of nodes = \(O(n \log u) \).

\[
S = \{0, 2, 8, 11, 14\} = \{0000_2, 0010_2, 1000_2, 1011_2, 1110_2\}
\]
• Simple trie solution:
 • Store trie as binary tree.
 • predecessor(x): search top-down in trie using the binary representation of x as long as possible (longest prefix match).
• => $O(\log u)$ for predecessor query and $O(n \log u)$ space.
X-Fast Tries
X-Fast Tries: Data Structure

- Store the set of prefixes for each depth in (perfect) hash table:
 - $d_1 = \{0, 1\}$, $d_2 = \{00, 10, 11\}$, $d_3 = \{000, 001, 100, 101, 111\}$, $d_4 = S$
 - $S = \{0, 2, 8, 11, 14\} = \{0000_2, 0010_2, 1000_2, 1011_2, 1110_2\}$

- $\Rightarrow O(n \log u)$ space.
X-Fast Tries: Searching

- To find longest prefix match of x do a *binary search* over the depth.

- Example $x = 9 = 1001_2$:
 - Lookup 10_2 in d_2 => exists so we continue in bottom $1/2$ of tree.
 - Lookup 100_2 in d_3 => exists so we continue in bottom $1/4$ of tree.
 - Lookup 1001_2 in d_4 => does not exists => 100_2 is longest prefix match.

$$S = \{0, 2, 8, 11, 14\} = \{0000_2, 0010_2, 1000_2, 1011_2, 1110_2\}$$
X-Fast Tries: Searching

Lookup most significant half of x in hash table for depth $\log u/2$ and recurse on top or bottom.

- Binary search of depth of $\log u$.
 - Each step takes $O(1)$ time (lookup in perfect hash table for depth)
 - $\Rightarrow O(\log \log u)$ time for predecessor.
Summary

- Theorem: We can solve the static predecessor problem in
 - $O(n \log u)$ space
 - $O(\log \log u)$ time for predecessor.
- How do we get linear space?
Y-Fast Tries
Y-Fast Tries: The Data Structure

- Partition S into $O(n / \log u)$ groups of $\log u$ consecutive values.
- Compute $S' = \text{set of split values between groups.} \ (|S'| = O(n / \log u)).$
- Data structure: x-fast trie over S' + balanced search trees for each group.
- Space:
 - x-fast trie $O(|S'| \log u) = O(n / \log u \cdot \log u) = O(n)$
 - balanced search trees: $O(n)$ total.
Y-Fast Tries: Searching

- predecessor(x):
 - Find predecessor s of x in S’.
 - Find predecessor of x in group left or right of s.

- Time:
 - x-fast trie: $O(\log \log u)$
 - balanced search tree: $O(\log |G|) = O(\log \log u)$.

Diagram:

- Groups of log u values
- Split values
- 0 to u-1
Y-Fast Tries: Searching

- Theorem: We can solve the static predecessor problem in
 - $O(n)$ space
 - $O(\log \log u)$ time for predecessor.

- What about updates?

- Theorem: We can solve the *dynamic* predecessor problem in
 - $O(n)$ space
 - $O(\log \log u)$ *expected* time for predecessor and updates.

From dynamic hashing
Summary

• Predecessor problem
• First tradeoffs
• Simple tries
• x-fast tries
• y-fast tries
References

• P. van Emde Boas, Preserving Order in a Forest in less than Logarithmic Time, FOCS, 1975

• Dan E. Willard, Log-Logarithmic Worst-Case Range Queries are Possible in Space $\Theta(n)$, Inf. Process. Lett., 1983

• Mihai Patrascu, Mikkel Thorup, Time-space trade-offs for predecessor search. STOC 2006

• Scribe notes from MIT