Exercises for String Matching

Inge Li Gørtz

Bounds on the naive algorithm Give an example that show that the worst case running time of the naive algorithm is $\Omega(nm)$. What is the best case running time of the naive algorithm?

Fingerprinting

- Show how to remove the assumption that the alphabet is binary. Assume the alphabet $\Sigma = \{1, 2, \ldots, u\}$. What if the alphabet is not integers?
- Show that $F(T_{s+1}) = 2 \cdot F(T_s) - 2^m T[s] + T[s + m + 1]$.

Cyclic rotations Given two strings P_1 and P_2, determine if P_1 is a cyclic rotation of P_2. The string P_1 is a cyclic rotation of P_2 if $|P_1| = |P_2|$ and P_1 consists of a suffix of P_2 followed by a prefix of P_2. For example, arc is a cyclic rotation of car.

Circular strings Give an algorithm to determine whether a string P_1 is a substring of a circular string P_2. A circular string of length n is a string in which character n is considered to precede character 1.

KMP preprocessing Show we can find all occurrences of P in T by computing π for PT, where $\$ is a symbol not in Σ.

Finite automaton preprocessing Give an $O(m|\Sigma|)$ algorithm for computing the transition function δ for the string matching automaton for a pattern P.

Hint Prove that $\delta(q, a) = \delta(\pi[q], a)$ if $q = m$ or $P[q + 1] \neq a$.

2-dimensional matching Give an algorithm to solve the problem of looking for a $m \times m$ pattern P in an $n \times n$ array of characters. The pattern can be shifted vertically and horizontally, but not rotated.

Linear time verification of Rabin-Karp Let L be the list of starting locations of probable occurrences of P in T returned by the Rabin-Karp algorithm. A run is a maximal interval of consecutive starting locations l_1, l_2, \ldots, l_r from L such that $l_{i+1} - l_i \leq m/2$. Consider a single run:

- A string S is semiperiodic with period δ if S consists of one or more copies of δ followed by a prefix of δ. Show that if P occurs at position l_1 and l_2 then P is semiperiodic with a period of length $d = l_2 - l_1$.
- Show that d is the smallest period of P.
- Show that if there are no false matches in the run, then $l_{i+1} - l_i = d$ for each i in the run.
- Show that it suffices to check the previous condition plus explicitly checking each of the d characters of T starting at position $l_i + m - d$ against the last d characters of P for each i.

Time analysis:

- Show that no character of T is examined more than twice during a check of a single run.
- Show that no character of T can be examined in the check of more than two runs.
- Conclude on the running time.

Mandatory exercise Let T be a tree, where each edge is labeled with one or more characters, and let P be a string. Let S be the set of subpaths of all root-to-leaf paths in T. Note that a subpath can start and end anywhere, also in the middle of an edge. The label of a subpath is the labels on the edges in the subpath. Give an efficient algorithm that finds all subpaths in S that are labeled with pattern P.